
Budding of lipid bilayer vesicles and flat membranes

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys.: Condens. Matter 4 1647

(http://iopscience.iop.org/0953-8984/4/7/004)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 11/05/2010 at 00:01

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/4/7
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys.: Condens. Matter4 (1992) 1647-1657. Printed in the UK 

Budding of lipid bilayer vesicles and flat membranes 

W Wiese, W Harbicht and W Helfrich 
Fachbereich Physik, Freie Universitat Berlin, Arnimallee 14,1000 Berlin 33, 
Federal Republic ofGermany 

Received 21 October 1991 

Abstract. We reconsider Yesicle budding, this time including (besides bilayer bending elas- 
ticity) the energy of monolayer stretching. i.e. area dilation of one monolayer and mm- 
pression of the other. Monolayer stretching during a shape change of the vesicle affects the 
spontaneous curvature of the membrane but, if measured values of material parameters are 
inserted in the equations, it turns out to be a minor perturbation. We also treat the budding 
of infinitely extended flat membranes where the spontaneous curvature is strictly constant 
during the deformation. The calculated shapes are compared to photographed buds in very 
large phosphatidylcholine membranes, 

1. Introduction 

The shape transformations of Buid bilayer vesicles have recently been studied, both 
theoretically [1-6] and experimentally [3-71. A problem of particular interest in this 
context is the formation of buds (i.e. daughter vesicles still connected to the mother), 
which has been considered in all of these studies. Possible causes of shape trans- 
formations are changes in vesicle volume, membrane spontaneous curvature, or the 
area difference between the monolayers which constitute the bilayer. In the previous 
shape calculations either the spontaneous curvature, co, or the area difference, AA, 
were assumed to be independent of the shape, although their changes may induce the 
transformation. The constraints do not affect the possible equilibrium shapes, but those 
which are unstable in one case can be stable in the other. In particular, depending on 
whether the spontaneous curvature model (shape-independent co) or area difference 
model (shape-independent AA) were adopted, the budding transition was predicted to 
be discontinuous or continuous, respectively. 

A complete model, comprising the co and AA models as limiting cases, has been 
proposed in rudimentary ways some years ago [&IO]. It permits both AA and co to 
change in a shape transformation, the two being related by the area dilation of one 
monolayer and the corresponding area compression of the other monolayer which 
accompany the shape change. We will call it here the monolayer stretching model. 

The experimental observations [3-71, mostly made with dimyristoyl phospha- 
tidylcholine bilayers, seem to be in favour of the AA model as they showed budding to 
proceed via pear-like shapes which are unstable in the co model. The situation is not 
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quite clear, however, as the last stage of the budding transition-the closing of the 
constriction between daughter and mother-occurred abruptly and displayed hysteresis 
[7]. Sometimesthewholetransitionwasabrupt. leadingfromanirregularspheredirectly 
to the final mother-daughter pair. 

In the following, we will argue that, in the case of phosphatidylcholine bilayers and 
similar lipid membranes, the spontaneous curvature model should be closer to reality 
than the other limiting case. This makes it worthwhile to consider 'pure budding' (i.e. 
the formation of a bud in an infinitely extended flat membrane), for which the cg model 
is correct in any event. We will show that pure budding, which takes place at positive 
lateral tension, always requires an activation energy and can occur only if the ratio of 
spontaneous curvature to lateral tension is large enough. Finally, an experimental 
demonstration of almost pure budding will be compared to the theoretical results. 

2. Monolayer stretching model 

The two monolayers in a fluid bilayer are free to slide over each other. They have 
different areas in a curved bilayer (e.g. a closed vesicle membranes). The difference in 
area, AA = A,,, - Ai, ,  between the outer and inner monolayers of a vesicle membrane 
is given by 

Here cI  and ci are the principal curvatures of the membrane (counted positive if they 
are convex towards the outside) and the length a is the distance between the neutral 
surfaces of the monolayers. Obviously, AA can change in a deformation and the change 
AzA isthedifferencebetween AA after thedeformationand AA before thedeformation: 

A'A = Q ( c , + c , ) d A - $  before ( C , + C d d A ] .  (2 )  

Let us assume that the two monolayers are practically identical and that the amount of 
lipidin either isconstant. Thelatter assumptionisjustified by theverylongcharacteristic 
times (of the order of hours) of lipid exchange with the aqueous media and of lipid Rip- 
flop between the monolayers [ll]. Under these circumstances a positive AZA means a 
uniform dilation, by A2A/2. of the outer monolayer and an equal compression of the 
inner one. The double effect results not in a lateral tension but an additional couple per 
unit length, AT,  along a cut through the bilayer. Evidently, 

Az = fak , (A2A)/A (3) 
where k ,  is the stretching modulus of the bilayer, A positive torque tends to produce 
positive curvature. The couple is linked with a change in the spontaneous curvature of 
the bilayer Aco through 

A r =  -k&, (4) 

ACQ = -b(ak,/k,) (A'A)/A.  (5) 

k, being the bilayer bending rigidity [12]. Combining (3) and (4) yields 

For an cstimate, it is convenient to view the monolayers as elastic plates of lateral 
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compression modulus k,/h where h is the thickness of the bilayer. Accordingly, the 
neutral surfaces are in the middle of each monolayer, which implies a = h/2. In this 
model, the bending rigidity of the bilayer is easily seen to derive from its stretching 
modulus through [S, 12-14] 

k, = hkp2. (6) 

Insertion of (2) and (6)  in (5) leads to 

with (Y = 3. The same value of the numerical factor 

(Y = a2kJ4k, (8) 

is obtained if one substitutes k, = 200 mN m-l and k,  = (2/3) x J [U]. both of 
which may be regarded as typical, and assumes a = 2 nm (i.e. about half the bilayer 
thickness). We believe that the real value of (Y does not cliffer by more than a factor of 
two from (Y = 3 for DMPC bilayers and similar electrically neutral phospholipid and 
glycolipid membranes. 

The shape equation for axisymmetric equilibrium shapes has been the basis of all 
treatments of budding. It is obtained from the general variational ansafz 

where the first two terms in the bracket represent the bending elastic energy of the 
bilayer for constant co. The spontaneouscurvature, col the bilayer lateral tension, h,  and 
the pressure difference, A p  =pout -pin, across the vesicle membrane can each be a 
Lagrange multiplier ensuring constancy of AA, A ,  and V ,  respectively, or the intensive 
parameter of a suitable reservoir. The membrane area, A ,  and the vesicle volume, V ,  
are always considered to  be constant in vesicle shape transformations, so that h and A p  
are Lagrange multipliers. However, co is a Lagrange multiplier in the AA model but 
may be viewed as a reservoir parameter in the cn model (see below). In the monolayer 
stretching model, we take co to be the initial spontaneous curvature and add the energy 
of monolayer stretching 

in the bracket of (9). This changes the spontaneous curvature by Acn, but does not affect 
the character of the shape equations. 

The initial spontaneous curvature, co, can be of chemical origin, being due, for 
example, to unequal aqueous media inside and outside the vesicle. However, it can 
also arise from an initial non-equilibrium distribution of the lipids (i.e. monolayer 
compression and dilation) on which the deformation of the vesicle superimposes an 
additional imbalance. 

A cross section of the vesicle containing the axis of rotation may be described by 
?$ = ?$(x).  where x is the local distance from the axis of rotation and I) is the angle made 
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Figure 1. Reduced bending energies of equilibrium shapes as functions of reduced spon- 
taneous curvature at conslant V j V ,  - 0.98. The radius R,,, the volume V,, = (4n/3)R:). and 
bendingencrgyE,refer to thespherewith R,, = (A/4z)lewhereA istheconstanl membrane 
area. The spontaneouscurvature is assumed to be independent ofvesicle shape (q,model). 
The top curve represents unstable asymmelric shapes which. from right to left. are eggs, 
pears. and buds with an open constriction. It starts a1 COR. 5 19 (no1 16. as erroneously 
shownin [2])from thecurveof thesymmetricelongatedshapeswhicharcnearlyellipsoidal. 
The symmetric shapes are locally stable for c,&C 19 and unstable for c&> 19, The 
dashed curve represents the double sphere, i.e. a mother-daughter pair with infinitesimal 
constriction. 

by the membrane and the equatorial planes of the vesicle. The principle curvatures, 
along the meridian and in the orthogonal direction, are then given by 

Insertion in (9) leads to the shape equation 

[&,(cm + cP)* - k,(c, + cp - c, - Ac,,)~, + A] 2zx sin II, 

+ Ap z x 2  - k ,  COS @ d(c, + C , ) / d r  2 . c ~  COS = 0 (11) 

which can be rewritten in various ways for computer calculations. 
Previous studies investigated how the budding of almost spherical vesicles proceeds 

while a shape-independent co or AA is increased at fixed volume, or Vis decreased at 
fixed co or AA. Increasing AA at fixed volume, one may start from a prolate vesicle with 
equatorial reflection symmetry which, on becoming asymmetric, successively transforms 
into eggs, pears, and shapes with a constriction [3,4]. The limiting shape of this con- 
tinuous transition is a mother-daughter pair consisting of a large sphere and a smaller 
sphere connected by an ideally infinitesimal constriction. 

Thesituation isverydifferent ifcoinsteadof AA isthe shape-independent parameter 
whose change drives the transition. In this case the eggs, the pears, and part of the 
constricted shapes are unstable. In configurational space, they represent saddle points 
ofthe bendingenergywhichare tobeovercomeonthewayfromnearellipsoidsto highly 
constricted shapes and vice versa. This is illustrated by figure 1 which is taken from our 
previous publication [2]. The length R, = (A/4z)'/' is the radius of the sphere that can 
be formed from the fixed-membrane area A ,  and Vo = ( 4 z / 3 ) R ;  is the volume of this 
sphere. The energies of the calculated ellipsoids and pass shapes are shown in figure 1 
as functions of spontaneous curvature at constant vesicle volume, V = 0.9SVo. Also 
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FigureZ. Arbitraryplotof thenegative averagecurvature,J, against the actualspontaneous 
curvature. co (or co + Ac,). for two branches of equilibrium shapes of the same vesicle 
(reduced values). The dashed lines of slopes I/" indicate how to find, for a particular shape 
0nthelowerbranch.therelatedshapeon theupper branch when thespontaneouscurvature 
dependsonshape.Thewolimitingcases,w = Oandrum x,representthec,andaAmodels, 
respectively. 

shown are the energies of the mother-daughter pair with an infinitesimal constriction; 
the radius of the daughter is 0.1215 A,. Their curve represents an upper limit for the 
energies of locally stable motherdaughter pairs. In complete calculations the energy 
curves of the unstable and locally stable asymmetric shapes emerge at a certain co from 
a common starting point and the constriction of the locally stable shapes closes at some 
larger co [3,4]. Budding can take place where its activation energy becomes thermally 
accessible. As c,, increases this will be the case only where the energy curve of the 
unstable shapes has come close to that of the ellipsoids. The topography of energy ridges 
and valleys in configurational space requires the ellipsoids to be unstable beyond this 
point. 

Inthemonolayer stretchingmode1,one hasto takeintoaccount that thespontaneous 
curvature changes according to (7) as the initial ellipsoid deforms. In order to relate 
other equilibrium shapes to the initial one we can use the construction exemplified in 
figure 2. The two curves are arbitrary plots of the average curvature 

J = -  ( c , + c , ) U  (12) A '+ 
against the spontaneous curvature for two branches of equilibium shapes. Starting, for 
example, from the lower curve at co = 0.5Rgl. we have to find the shape on the upper 
curve with the right spontaneouscurvature. Thespontaneouscurvature ofthe new shape 
is co + Ac, where Aco has to obey 

ACO = -4jupper -Jiowcr). (13) 

Any equilibrium shape satisfying this condition lies on the straight line, with slope 1/a, 
that also contains the starting point. The two limiting cases, (Y = 0 and (Y = .XI, represent 
the coand AA models, respectively. 
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Figure3. Plotofthree times the negativeaver, 
age curvature against the actual spontaneous 
curvature (reduced valucs). The upper and 
lower curves represent symmetric shapes 
(near ellipsoids) and asymmetric shapes 
(pears etc), respectively. The dashed straight 
lineofunityslopeconnectstwo related shapes. 

The elasticenergy difference between the equilibrium shapes related in this way may 
be expressed by 

AE = Ak, f (c, + c ~ ) ~  dA - +kc $ (cl  + c2)’ dA - k,c, f (c, + c t )  dA 
after before after 

where co is the spontaneous curvature before the shape change and the last term is the 
energy of monolayer compression and dilation. For a proof of (14), one may imagine 
the compression and dilation to be accomplished after the membrane took its new 
configuration in contact with monolayer reservoirs that kept its spontaneous curvature 
constant. 

To deal with budding, we assume a = 3 and plot in figure 3 the quantity -3 jR0  
against ~ & ~ f o r  theellipsoids(uppercurve) and theasymmetricshapes( pearsetc, lower 
curve) of figure 1. As the scales on the two axes are so different, straight lines of 
slope unity relating shapes to each other are rather steep in this figure. We associated 
asymmetric shapes to the ellipsoids, which are regarded as the initial shapes, and 
calculated the energy difference (14) as a function of c.,. Similarly, we determined 
Ac& and the energy of the (immutable) mother-daughter pair with an infinitesimal 
constriction as functionsofthe spontaneouscurvatureofthe initial ellipsoid, The integral 
jwas  taken here simply over the two spheres as there is no contribution to it from the 
infinitesimal constriction, The decrease of spontaneous curvature due to monolayer 
stretching and compression is stronger for the double sphere than for the more weakly 
deformed asymmetricshapes. We do not show the two newenergycurvesasthey hardly 
differ from the corresponding curves of figure 1. The reduced energies of the double 
sphere. as defined in figure 1, are lifted by 0.033 while those of the unstable asymmetric 
shape are maximally raised by less than half this number. Obviously, monolayerstretch- 
ing increases the barrier to budding, but it makes so little difference that the c, model 
may be regarded as a good approximation. 

Figure 3 indicates that unrealistically large values of cr (60 instead of 3) would be 
needed to approach the other limitingcase, i.e. the AA model. Simple estimates suggest 
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that changes of the spontaneous curvature due to monolayer stretching should not alter 
thecharacterofbudding.includingtheextremecaseofadaughteras1argeas themother. 

3. Pure budding 

The budding of vesicles takes place on a curved membrane and may be outwards, as 
just considered, or  inwards. The difference between the two directions will become 
insignificant if the mother is much larger than the daughter vesicle. Budding on an 
infinitely extended flat membrane (to be called 'pure budding') is equal in both direc- 
tions. The spontaneous curvature model must be exactly valid in this case. Since (Y is so 
small (CY = 3), pure budding should still be a good approximation in many practical 
situations where the membrane area is finite. 

The membrane configurations of pure budding are determined by two lengths, as 
may be seen from (11). They are the deflection length 

6 = (k</d)'" (15) 
which characterizes the decay of a local perturbation of planarity and the curvature 
length 

5 = l/co (16) 
which is the inverse of the spontaneouscurvature. The shape, apart from size, depends 
only on the ratio of the two lengths or, if we disregard the direction of budding, on 
( 5/E)2  = d/(k,ci). Either length can therefore be used to describe the size of the shape. 
Figures 4 and 5 show three equilibrium configurations of pure budding. As in the case 
of vesicles, the length Ro is related through 4nR; = A  to the surface area of the shape, 
as far as it is computed. New boundary conditions are required to deal with a 'vesicle' 
that is open on one side, so that its calculated contour ends at some x = x,,. Introducing 
the displacement of the membrane, U = u(x) .  from the plane of the flat membrane, we 
assumed for x xo 

Y ( x )  = -du(x)/& (17) = l*o e - ( ~ - ~ " ) i 5  

which should be good approximatins whenever I Y(x0)  I 1, so that cp is much weaker 
than c ,  at x = xo. The energies of formation of these equilibrium shapes contain a term 
that accounts for the work of pulling in membrane area to form a bulge in the originally 
flat membrane. Inspection of the shape equation (11) shows the reduced energy to 
depend only on ( c/6)2. The energy is plotted in figure 6 against A/(&ci), or simply A if 
co is taken to be constant. The solid curve starting at the origin and ending where it 
merges with another piece of solid curve represents the unstable or pass shapes, i.e. 
wide bulges near the origin and buds with a narrow constriction at the end. The short 
full curve represents three locally stable shapes. The point on its left belongs to the shape 
of figure 4(a) which has the narrowest constriction of all the calculated shapes. There is 
little doubt that the line of locally stable solutions closely follows the dashed curve which 
gives the energy of spherical buds connected to a flat membrane by an infinitesimal 
constriction. The actual energies are slightly below this limiting curve before the con- 
striction becomes infinitesimal at some unknown A/(k,ca). The same data plotted 
against co(k,/A)'~*, or co at constant A,  are displayed in figure 7. 

The last two figures indicate that budding requires activation energies for all A > 0. 
The barrier isvery high at d/(k,c?j) = 0.5 where absolute stabilitychangesfrom the bud 
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Figure 4. Cross Sections containing the axis of rotation of three equilibrium shapes of pure 
budding: ( a )  for c. = 3.2R;'. A * IZk,R;' (locally stable shape); (b)  for c, = 5R;'. 
A = 12k,R;' (unstable shape): and (c) for c. = 16R;'.A = 12k.R;' (unstable shape). 
The scales are adapted to size. 
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FigureS. The threeequilibriumshapes 
of fiaure 4 shown on equal scale and 
overthewholelengthsolthecalculated OOp ' ' '&' ' ' ',b' ' ' ',;' ' ' 'J0 

X l R o  contours 

to the flat membrane. With k, = (2/3) x J one finds the changeover at E = 7 x 
J = 180 k,Tforroom temperature(k, = Boltzmann'sconstant; T = temperature). 

Thermal activation within a reasonable period of time seems possible only if Eis  of the 
order of a few k,T. A linear continuation of the calculated E(A) into the origin gives 
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Flgure6. The reduced energies of the calculated equilibrium shapesof pure budding against 
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Figure 7. The reduced energies of the calculated equilibrium shapes versus cdk Jd)'R. 

A/(!&) - 0.0015 for E = kBT. As a consequence, thermally activated pure budding 
may be expected to produce fully constricted shapes. 

Some yearsago we noticed that budding in very extended membranescan sometimes 
be achieved by mechanical activation, i.e. by touching the cover slide of the sample cell. 
The results of such an activation of egg yolk phosphatidylcholine bilayers are shown in 
figure 8 (shortly after the mechanical excitation) and figure 9 (about a minute later). The 
constrictions of the numerous buds are narrower at the later time, but they are still wider 
than may be expected on the basis of the locally stable equilibrium shapes shown in 
figures 4 and 5. (The ratio of the radii of constriction and equator is 0.078 for this shape. 
For the turning point of the energy curve at A/(!&) = 1.38 we esfimate the ratio to be 
0.24, which is still less than the ratios read from figure 9.) The buds tend to disappear 
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Figure 8. Buds farming in very extended egg yolk 
phosphatidylcholine membranes after mechanical 
shock, as seen in dark field microscopy. The bar rep- 
resents20fim. Cell thickness was about 100fim. 

Figure 9. The same set of membranes as in figure 9 
roughly a minute later. Note that two of the buds are 
about to disappear, the membrane returning to the 
flat state. 

after a while, apparently by thermal activation, as may be seen by comparing figures 8 
and 9. In the later photograph one bud has transformed into a gentle bulge and another 
is no longer constricted. On the other hand, further touches of the sample cell converted 
a few buds into separate vesicles. 

The observations may be taken to suggest that the buds in all six membranes seen in 
the photographs are locally stable equilibrium states next to the point where the shapes 
turn unstable, i..e very near A/(kcc?j) = 1/(E2c?j) = 1.3. It is interesting to estimate the 
deflection length, 5 = (kc/?+)”*, from figure 9 in two different ways. From the feet of the 
buds, which should approach the baseline exponentially (see above), we read E = 2- 
3 pm, Comparing the radii, r ,  of the buds to the theoretical shape and its parameters, 
we find r = 0.09Ro = 0.72ci’ and thusc, = 0.72/r. The figure indicates r = 4 pm which, 
withE2 = 1/(1,3~6),leadsto5 = 4.9pm.Thetwoestimatesagreefairlywell. However, 
the non-negligible difference of the two values for 5, the constrictions that seem too 
wide, and especially the strange implication that h/(k,c$) should be in a narrow range 
of about 10 percent near the turning point of the energy curve for all the membranes, 
may raise some doubts about the agreement between theory and experiment. 

4. Conclusion 

We have shown that the budding of vesicles (made of common biological model mem- 
branes) should be an abrupt process, leading from an elongated shape to a mother- 

~~ ~~~ 
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daughter pair with a narrow or  infinitesimal constriction. For this purpose, we used a 
model which comprises the two conflicting models of previous calculations as limiting 
cases and inserted known experimental numbers for the bilayer stretching modulus and 
the bending rigidity. The result leaves little or no room for a continuous budding 
transition through weakly asymmetric stable vesicle shapes such as eggs and pears. The 
fact that such transition states have been found experimentally appears very puzzling. 
Perhaps it has something to do  with a superstructure of these membranes which was 
postulated for other reasons [16] and seems confirmed by electron microscopy [17, IS]. 
We may speculate that the superstructure, expected to develop in the absence of stress, 
resists strong deformations of the membranes. This could explain why vesicles prefer 
weakly asymmetric shapes over the final bud with its infinitesimal constriction. The 
superstructure may also intervene in the budding of very extended, practially flat mem- 
branes, as our photographed bud shapes do  not fully agree with the theoretical pre- 
dictionsfor pure budding. It may be worth mentioning, in acompletely different context, 
that the theory of pure budding should also apply to the solubilization at interfaces, a 
process in which micelles are formed from a flat amphiphilic monolayer 1191. 
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